
1

Formalization and Validation

An Iterative Process in Model Synthesis

Jörg Desel

Katholische Universität Eichstätt-Ingolstadt
Lehrstuhl für Angewandte Informatik

85071 Eichstätt, Germany
joerg.desel@ku-eichstaett.de

ABSTRACT. This work considers model synthesis and validation in controller design. The
problem we are interested in is to derive a formal model of a controlled automation system
from a semi-formal description of the uncontrolled plant and various requirements concerning
the plant and the processes of the controlled system. These requirements are formulated on
many different abstraction levels, partly employing formal notations, partly using just natural
language and partly consisting of mixtures of both. Moreover, they are often incomplete,
contain errors, contradict each other and assume some domain knowledge which is typically
not explicitly stated. So a crucial part of the model synthesis process is the formalization of
the plant and of the requirements as well as validation of the derived models. We suggest a
simulation-based method which employs formal and graphical representations of process
models and specifications and which involves an iterative process of formalization and vali-
dation of requirements. The approach uses Petri nets as formal process models and partially
ordered runs as their semantics. This contribution also reports on experiences with applying
the method for an industrial case study and on an according developed tool.

1 Introduction

This contribution is on model based development of software systems that are supposed to run in
a technical environment. More precisely, we deal with the development of such systems which is
based on formal process models. We formulate a view from computer science (or informatics, as
we call this discipline in Germany). However, the concepts described were developed together
with automation engineers from academia and from industry.

Model based system development can only lead to a valuable system if the underlying models
faithfully represent the requirements. The requirements include information about the existing or
the planned environment of the system as well as the desired system behavior within this envi-
ronment. These statements hold true for a wide range of systems. In this work we concentrate on
computer systems which are supposed to function in a given technical environment. These in-
clude automation systems composed of a plant and a control restricting the plant’s behavior. In
this setting, the aim is to develop a control algorithm such that the controlled system matches the
requirements. Unfortunately, the requirement specification is often formulated on many different
abstraction levels, partly employing formal notations, partly using just natural language and

mailto:joerg.desel@ku-eichstaett.de

2

partly consisting of mixtures of both. Moreover, it is usually incomplete, contains errors, is con-
tradictory and assumes some domain knowledge which is not explicitly stated.

Since the general aim is to develop the controller software, one possible approach would be to
start with generating a formal specification of this software. This software has to run within the
environment. Therefore, a formal specification of this environment, namely the plant, is neces-
sary as well. This specification is not easy to obtain because the user is interested in the overall
behavior. Thus he will only provide information concerning the controlled system, i.e. the com-
position of plant and control. Moreover, the precise behavior of the plant might be unknown as
well. Faulty assumptions on the plant specification will lead to faulty or incomplete control
specifications, which eventually leads to controller software that matches the specification but
does not satisfy the user’s needs.

Therefore, we proceed differently; we aim at a model of the entire system, including both the
plant and the control. This model can be viewed as a specification of the total system. A given
control software matches the specification if its behavior together with the plant precisely corre-
sponds to the behavior of the model. The model of the entire system is generated from the differ-
ent specification items that are given in different form mentioned above. The crucial steps in
model synthesis are the appropriate formalization of the requirements (and their validation) and
the correct synthesis of the model from the formal specifications.

This work will present an approach for model synthesis for controlled systems that employs dif-
ferent formalization / validation steps and a synthesis procedure to obtain the model from the
specifications in a systematic way. The approach is based on Petri nets and the simulation of
Petri net models. By simulation we mean construction and inspection of causal runs, represented
again by Petri nets.

Model synthesis is used in controller design, for the examination of specifications w.r.t. feasibil-
ity and for creation of reference models for the final system that are used for verification and
tests. These models are also very useful as a basis for model-based test case generation. So we
view model synthesis, formalization and validation as one important early phase in system de-
velopment.

The paper is organized as follows: In the forthcoming section we describe what we mean by
validation of models, in contrast to system validation. We also distinguish validation from verifi-
cation and formalization from specification. Section three is devoted to the steps of our approach
in a general setting. In section four, the formal model, namely Petri nets and its causal semantics,
is presented. The causal simulation of Petri nets, its advantages and some words about algo-
rithmic aspects is the topic of section five. Whereas the forth and fifth sections only contain an
academic example, section six reports on experiences with this approach obtained with an indus-
trial case study. This section also contains extensions of the modeling language and conclusions.

The first sections of this paper are strongly based on [De00a] and [De02], where more details can
be found. Different aspects of the approach were also adapted to and presented in various differ-
ent communities (see [De99, De00b], and see [De00c] for using part of the concept for education
purpose).

3

2 Model Validation

This section is devoted to a general discussion of the term “model validation” in system design.
Validation is usually related to systems. We adopt its meaning to models.

The usual definition of validation of a system in relation to verification and evaluation reads as
follows:

Validation. Validation is the process determining that the system fulfills the purpose for which
it was intended. So it should provide an answer to the question "Did we build the right system?"
In the negative case, validation should point out which aspects are not captured or any other
mismatch between the system and the actual requirements.

Verification. Verification is the automated or manual creation of a proof showing that the sys-
tem matches the specification. A corresponding question is "Did we build the system right?"
In the negative case, verification should point out which part of the specification is not satisfied
and possibly give hints why this is the case, for example by providing counter examples. Nowa-
days, model checking is the most prominent technique used for automated verification. Proof
techniques can be viewed as manual verification methods.

Evaluation. Evaluation concerns the questions "Is the system useful?", "Will the system be ac-
cepted by the intended users?" It considers those aspects of the system within its intended envi-
ronment that are not formulated or cannot be formulated in terms of formal requirements specifi-
cations. The question "How is the performance of the system?" might also belong to this cate-
gory, if the system’s performance is not a matter of specification.

This contribution is about validation of models, namely process models. So replacing the term
“system” in the above definitions by “process model” should provide the definitions we need.
Models are used as specifications of systems. Unfortunately, replacing “system” by “specifica-
tion” in the definitions does not make much sense. So we need a more detailed investigation of
the role of models and of validation in model-based system development.

The following figure presents the usual view:

systemmodel
real

world

abstracts from
implementation details

abstracts from
irrelevant details

analysis
and design coding

Model-based system development

Fig. 1: Model based system development

In this figure, the model is an abstract representation of both, the relevant part of the “real world”
and the actual system implementation. It abstracts from irrelevant details of the considered part

4

of the “ real world” , and it abstracts from implementation details of the system. Verification
mainly concerns the relation between the model and the system implementation, validation con-
cerns the relation between the model and the “ real world” , whereas evaluation directly relates the
system and the “ real world” .

The above view ignores that the system to be implemented will have to function within an envi-
ronment, which also belongs to the “ real world” . So the left hand side and the right hand side of
the picture cannot be completely separated; they are linked via the “ real world” . The following
figure shows a more faithful representation of the situation.

model of the
real worldreal

world

 require-
ments

real
world

system
model
of the

require-
ments

Fig. 2: Capturing the embedding in the real world

Notice that the word “ system” is used with different meanings: the “ real world” (environment
plant), the software system to be implemented (control) and the composition of both (the con-
trolled plant). In the sequel we mainly use the term for the environment together with (part of)
the control.

A more detailed view of the model distinguishes requirements specification and design specifi-
cations on the level of the model.

model of the
real world

real
world

 system
require-
ments

real
world

system
imple-

mentation

require-
ments
spec.

design
specifi-
cation

formalization

formalization
specification specification

Fig. 3: Capturing requirements and design specifications

The model of the real world is obtained by analysis of the domain and formalization of its rele-
vant aspects. The requirements specification models the requirements and is derived by formal-
ization of the requirements that exist within the “ real world” . The design specification can be

5

viewed as a model of the system implementation, without considering implementation details
though. This model has to satisfy all properties formulated in the requirements specification. The
transformation from the requirements specification to the design specification is a nontrivial task.
Finally, there should be a more or less direct transformation from the design specification to the
system implementation. This implementation of the system is also said to be specified by the
design specification.

Now let us consider the reverse direction. It is a matter of verification to check whether the de-
sign specification actually matches the requirement specification. It can also be verified whether
the system implementation reflects the design specification. The correctness of the formalization
transformations can only be checked by validation. So “ formalization” and “ validation” is a re-
lated pair of terms in the same sense as “ specification” and “ verification” . Finally, requirements
that are not captured in the model can only be checked by evaluation of the system implementa-
tion within the “ real world” .

In the following figure, the arrow annotated by “ evaluation” points to the “ real world” including
the system requirements whereas the lower arrow annotated by “ validation” addresses only the
“ real world” without system requirements.

model of the
real world

real
world

 system
require-
ments

real
world

system
imple-

mentation

require-
ments
spec.

design
specifi-
cation

validation
verification

evaluation

verification

Fig. 4: The position of validation, verification and evaluation

In our context of controller design, the plant is part of the real world (the environment, respec-
tively) and the control plays the role of the system implementation. Formalizing the description
of the plant will yield a formal process model whereas the formalization of the requirements
have to be interpreted on this process model, or, respectively, on its behavior. Both formalization
steps have corresponding validation steps that are supported in our approach.

3 The Approach

How can we derive a formal model from a semi-formal description of a controlled system and of
its desired behavior? There is no general answer to this question, since modeling is a creative
process. Creating a model always means to formalize concepts that have not been formulated

6

that precise before. Therefore, misunderstandings, errors, missing assumptions etc. can not be
avoided in general. The best we can expect is to provide means for detecting these errors as soon
as possible.

We concentrate on process models that have a dynamic behavior and can thus be executed. So
for each process model there is the notion of a run, i.e., one of its executions. Our basic assump-
tion is that the domain expert (the user of our approach) knows well what the correct runs of the
desired system should look like but might have problems in formalizing an appropriate specifi-
cation of this set of runs. We will use causal runs, given by partially ordered sets of events and
local system states. A precise definition of causal runs and their graphical representation is de-
ferred to the next sections.

As mentioned in the previous section, formalization tasks appear at different steps: First, a given
or planned system that serves as the environment or plant has to be modeled. Second, the re-
quirements of the controlled system has to be specified. Both aspects deserve additional valida-
tion procedures. Given a valid model of the plant and a valid specification of the controlled sys-
tem, the following step is to design the control algorithm and to verify its correctness with re-
spect to the specification. This step is not within the scope of this contribution. However, it will
turn out that some verification means can also be used for validation purposes.

We first consider the problem of modeling a given system (the environment). The behavior of
the system should precisely correspond to the behavior of the model. Assuming that we have a
version of this model, our approach generates the runs of the model, visualizes this behavior in
an appropriate way and presents the result to the expert. This model is often derived directly
from the system’s structure and architecture. If the behavior of the system rather than its struc-
ture is known, then a first version of the system model is constructed from the runs by folding
appropriate representations of runs (this procedure is given in [DE00b] for workflow models).

The simulation of the system model either shows that the model can be accepted or that it does
not yet match the system. In the latter case, the model is changed according to identified model-
ing errors and the procedure is repeated. Only when the simulated runs of the model coincide
with the required runs, the model can be used to obtain information about the system. The proce-
dure for model validation can be complemented by verification means: If some behavioral prop-
erties of the system are known then the model should satisfy according properties as well. Since
this verification step is sometimes hard to conduct, there is an intermediate solution for proper-
ties that all runs should satisfy: Simulation is paired with verification of the simulated runs. This
requires an analysis method for runs, which is also the kernel of the formalization of other re-
quirements, to be discussed next.

Now we consider the formalization and validation of requirements. That is, we assume to have a
valid model of the environment (the plant) and add requirements that have to be satisfied by the
controlled system, i.e., that have to be guaranteed by the desired control. In our approach, we
only consider required properties that can be formulated as properties of runs (generally, all
properties of a Linear Time Temporal Logic). These requirements are formalized, validated and
implemented step by step. In the first step, we begin with some of the requirements and analyze
simulated runs of the existing model with respect to these requirements. The result is a distinc-
tion of those runs that satisfy the requirements and those that do not. This way the user gets in-

7

formation about his requirement specification in terms of runs (“ did you really want to rule out
precisely those runs that failed the test?”). Figure 5 illustrates this step.

filter

simulation

model 1

model 1
behavior

req. 1

req. 1
behavior

Fig. 5: A first step in requirements validation

After an iterative reformulation of the first requirements the simulation based approach should
eventually yield a valid specification of this requirement. Thereafter the system is modified in
such a way that it satisfies this requirement. For some requirement specifications, there is an
automated procedure for this task. In general, however, there is some freedom in how to imple-
ment the requirement. The implementation of the requirement is either verified by appropriate
verification techniques or checked again by simulation.

After the first step, a second requirement can be formalized, validated and implemented, based
on the modified model, in the same way (see Figure 6), and so on. Notice, however, that the im-
plementation of the new requirement should not violate a previously implemented requirement.
As long as all requirements only restrict the set of possible runs, this problem does not occur.
But, if liveness properties (requiring that something eventually happens) and safety properties
(requiring that something bad does not happen) are added in arbitrary order, then previous verifi-
cation steps might have to be repeated.

req. 2

filter

req. 1

implementation

model 1

model 2

simulation

model 2
behavior

req. 2
behavior

Fig. 6: A second step in requirements validation

8

4 Petri Nets

We concentrate on process models, i.e., on specifications of runs of a system. The formal mod-
eling language used in our approach is given by Petri nets. In this contribution, the approach is
explained by using a very simple variant of Petri nets, namely place/transition Petri nets.

Each process model has a dynamic behavior, given by its set of runs. In a run, actions of the
system can occur. We will distinguish actions from action occurrences and call the latter events.
In general, an action can occur more than once in a single run. Therefore, several events of a run
might refer to the same action. Runs and events of Petri nets can be defined in several ways. We
will discuss sequential runs, given by occurrence sequences and causal runs, given by process
nets.

We roughly follow the standard definitions and notations of place/transition Petri nets and proc-
ess nets [DR98, GR83]. However, in contrast to the usual notion, we equip process nets with
initial states, represented by markings of conditions.

A place/transition Petri net (P, T, pre, post, M0) is given by

• a finite set P (places), represented by circles,

• a finite set T satisfying such that P and T are disjoint (transitions), represented by squares,

• two mappings pre, post: T x P �{0, 1}, the derived flow relation F is given by

F = {(p, t) ∈ P x T | pre (t, p) = 1} ∪ {(t, p) ∈ T x P | post (t, p) = 1}

and is represented by arrows (notice that, conversely, F completely determines the mappings
pre and post, which is not the case in the more general setting where the domain of these
mappings is the set of nonnegative integers),

• an initial marking M0 : P �{0, 1, 2, ...} (represented by tokens in the places).

For a net element x in P ∪ T , •x denotes the set of elements y satisfying (y, x) ∈ F (the pre-set)
and x• denotes the set of elements y satisfying (x, y) ∈ F (the post-set of x).

We restrict our considerations to place/transition Petri nets without transitions t satisfying •t = ∅
or t• = ∅.

Given an arbitrary marking M : P �{0, 1, 2, ...}, a transition t is enabled if each place p satisfies
pre (t, p) ��M (p). The occurrence of t leads to a new marking M , defined for each place p by

M (p) = M (p) - pre (t, p) + post (t, p).

We denote the occurrence of t at the marking M by M t M .

9

Figure 7 shows a place/transition Petri net modeling a vending machine for beverages. The left
hand part describes a physical facility for brewing and dispensing warm beverages. At most two
warm beverages can be prepared concurrently. After dispensing a beverage, cold water is filled
in the respective unit, hence the place cold in the post-set of the transition dispense. The right-
hand part describes the control of the machine and a counter for coins. Initially, the machine is
ready for the insertion of a coin. An inserted coin will be checked; counterfeit will be rejected.
When a coin is accepted, a beverage can be dispensed and the control part of the machine returns
to the state ready.

brew

insert
coin

accept
coin

reject
coin

dis-
pense

warm
ready inserted

counter

Fig. 7: A Petri net model of a vending machine

This Petri net can be viewed as a composition of a plant and a control: The left hand part as well
as the transitions insert, reject and possibly the counter represent physical features and belong to
the plant, the remaining parts belong to the control. The specification of the overall system in-
cludes that after insertion of a correct coin eventually a beverage is dispensed, otherwise the coin
is rejected and nothing is dispensed.

There are basically two different techniques to describe the behavior of a Petri net model: A sin-
gle run can either be represented by a sequence of action names, representing subsequent events
or by a causally ordered set of events. The first technique is formally described by occurrence
sequences. It constitutes the sequential semantics of a Petri net. The second technique employs
process nets representing causal runs. It constitutes the causal semantics of a Petri net.

The main advantage of sequential semantics is formal simplicity. Sequential semantics general-
izes well-known concepts of sequential systems. Every occurrence sequence can be viewed as a
sequence of global system states and transformations leading from a state to a successor state.
Formally, these states are not explicitly mentioned but only the transition names of subsequent
events are given. One occurrence sequence of our example is

insert accept brew dispense insert accept brew dispense.

Its resulting state differs from the initial one only with respect to the place counter, which now
carries two tokens.

One of the main advantages of causal semantics is its explicit representation of causal depend-
ency, represented by paths of directed arcs in process nets. Consequently, concurrent events are
events that are not connected by a path in a process net. Causal semantics of Petri nets has been
studied in Petri net theory since a long time, starting with the work of Carl Adam Petri in the

10

seventies. Application projects employing Petri nets, however, mostly restrict to sequential se-
mantics, and so do most Petri net tools.

In sequential semantics, a run is represented by a sequence of events such that causal dependen-
cies are respected; if an event causally depends on another event, then these events will not ap-
pear in the reverse order in an occurrence sequence. A causal run also consists of a set of events,
representing action occurrences of the system. An action can only occur in certain system states,
i.e. its pre-conditions have to be satisfied. The occurrence of the action leads to a new system
state where some post-conditions of the action start to hold. An event is therefore causally de-
pendent on certain pre-conditions and might lead to new conditions that are causal prerequisites
for other events. The time and the duration of an event has no immediate influence on the sys-
tem’s behavior, as long as such dependencies are not explicitly modeled as actions of clocks.
Combining events with their pre- and post-conditions yields a causal run, formally represented
by a process net. Since pre- and post-conditions of events are explicitly modeled in a process net,
the immediate causal dependency is represented by the arcs of a process net. The transitive clo-
sure of this relation defines a partial order that we will call causal order; two events are causally
ordered if and only if they are connected by a chain of directed arcs. Otherwise, they are not or-
dered but occur concurrently.

Formally, the causal behavior of a place/transition Petri net (P, T, pre, post, M0) is defined by its
set of process nets, representing causal runs. For the formal definition of a process net, we em-
ploy again place/transition Petri nets: Each process net of the place/transition Petri net
(P, T, pre, post, M0) is given by a place/transition net (C, E, pre ��SRVW ��60), together with map-
pings α : C �P and β : E �T, satisfying the conditions given below. The places of a process
net are called conditions, the transitions events and the markings states. To avoid confusion with
process nets, the place/transition Petri net model (P, T, pre, post, M0) of the system will be
called system net in the sequel.

• Every condition c in C satisfies | •c | ����DQG�_�c• | ����
• the transitive closure of the flow relation K is irreflexive, i.e., it is a partial order over C ∪ E,

• for each event e in E and for each place p in P we have

| {c ∈ •e | α (c) = p } | = pre (β (e), p),
| {c ∈ e• | α (c) = p } | = post (β (e), p).

• S0 (c) = 1 for each condition c in C satisfying •c = ∅ and S0 (c) = 0 for any other condition c,

• α (S0) = M0, where α is generalized to states S by

α : (C �^������������`��� ���P �^������������`�������α (S) (p) = Σ(α (c) = p) S (c).

A condition c in C represents the appearance of a token on the place α (c). An event e in E repre-
sents the occurrence of the transition β (e). In a run, each token is produced by at most one tran-
sition occurrence, and it is consumed by at most one transition occurrence. Hence, conditions of

11

process nets are not branched. The transitive closure of K defines the causal relation on events
and conditions. Since no two elements can be mutually causally dependent, the causal relation is
a partial order. In other words, the flow relation has no cycles. Since events represent transition
occurrences, the pre- and post-sets of these transitions are respected. The initial state of the proc-
ess net is the characteristic mapping of the set of conditions that are minimal with respect to the
causal order, i.e., these conditions carry one token each, and all other conditions are initially un-
marked. Note that all minimal elements are conditions because, by our general assumption, every
event has at least one pre-condition. Finally, the initial state of the process net corresponds to the
initial marking of the system net, i.e., each initial token of the system net is represented by a
(marked) minimal condition of the process net.

Each process net represents a single causal run of a system net. We equip a process net with an
initial state S0 so that the token game can be played for process nets as well.

The following figures show two process nets of the vending machine example of Figure 7.

insert insert

brew brew

counter counter

warm

cold

inserted

ready

insertedaccepted ready accepted

cold
cold

warm

ready

warm

accept
dis-

pense accept
dis-

pense

Fig. 8: A process net representing a causal run of the vending machine

insert insert

brew brew

counter counter

warm

cold

inserted

ready

insertedaccepted ready accepted

cold
cold

ready

warm

accept
dis-

pense accept
dis-

pense

warm

Fig. 9: Another process net

The mappings from elements of these process nets to elements of the system net are represented
by annotations in the obvious way. For example, each event annotated by insert represents one
occurrence of the transition named insert of the system net.

Both process nets describe causal runs where two coins are inserted, both are accepted, and two
beverages are dispensed. So both runs end in state ready, with two tokens in counter, one token
in cold and one token in warm. In the first run, the beverage that was warm initially is dispensed

12

first. Figure 8 shows a run where the second dispensed beverage is brewed concurrently to all
previous events whereas in the run of Figure 9 the capacity of the brewing facility is not ex-
ploited; the second dispense event has to wait after the first dispense event at least the time nec-
essary for brewing a new beverage. So one could consider the run of Figure 8 more efficient with
respect to response time. Moreover, the quality of a warm beverage might decrease after a while
(this holds at least for coffee).

Using acyclic graphs to define partially ordered runs is common for many computation models.
The specific property of process nets is that each process net is formally a Petri net and that there
is a close connection between a process net representing a run and the Petri net modeling the
system; the events of a process net are annotated by respective names of actions of the system.
More precisely, mappings from the net elements of the process net to the net elements of the
Petri net representing the system formalize the relations between events of a process net and
transitions of a system net and between conditions of a process net and places of a system net.

As will be stated in the following well-known lemma, sequential and causal runs have strong
relations. Sequences of event occurrences of a process net closely correspond to transition se-
quences of the system net.

Lemma 1 [BF88]. Let (P, T, pre, post, M0) be a place/transition Petri net. If (C, E, pre ��SRVW ��60)
together with mappings α : C �P and β : E �T is a process net and

S0 e1 S1 e2 ... en Sn

is a sequence of event occurrences, then

M0 β(e1) α(S1) β(e2) ... β(en) α(Sn)

is a sequence of transition occurrences of (P, T, pre, post, M0). Conversely, for each sequence

M0 t1 M1 t2 ... tn Mn

of transition occurrences of the place/transition net (P, T, pre, post, M0), there is a process net
(C, E, pre ��SRVW ��60) with α : C �P and β : E �T and a sequence of event occurrences

S0 e1 S1 e2 ... en Sn

such that, for 1 ��i ��Q��α (Si) = Mi and β (ei) = ti.

Therefore, roughly speaking, the set of occurrence sequences of a place/transition Petri net coin-
cides with the set of occurrence sequences of its process nets when only the labels (β-images) of
events of these latter sequences are considered.

For example, the above mentioned occurrence sequence of transitions

insert accept brew dispense insert accept brew dispense

has related occurrence sequences of events in both process nets shown in Figures 8 and 9.

13

5 Simulation by Construction of Runs

By simulation we understand the generation of runs of the process model. For a valid model,
each run should represent a corresponding run of the system, and for each system run there
should exist a corresponding run of the model. Validation by simulation means generating and
inspecting runs of the model with respect to the desired runs of the modeled system. Since nei-
ther the system nor its runs are given formally, only domain experts can do this comparison. So
this task requires a good and easy understanding of the generated runs of the model.

Usually, the user is supported by a graphical representations of runs: The Petri net is represented
graphically and sequential runs are depicted by subsequent occurrences of transitions of the net.
We suggest to construct and visualize causal runs given by partially ordered process nets instead.
We argue that we gain two major advantages, namely expressiveness and efficiency.

Every sequence of events, i.e. transition occurrences, defines a total order on these events. A
transition can either occur after another transition because there is a causal dependency between
these occurrences or the order is just an arbitrarily chosen order between concurrent transition
occurrences. Hence, an occurrence sequence gives little information on the causal structure of
the system run. Interesting aspects of system behavior such as the flow of control, the flow of
goods, possible parallel behavior etc. are directly represented in process nets, but they are hidden
in sequences of events.

Consider again the occurrence sequence insert accept brew dispense insert accept brew dispense
of the place/transition Petri net of Figure 7. This sequence corresponds to both process nets given
in Figure 8 and Figure 9. It is a sequential view of both causal runs because both process nets
possess corresponding occurrence sequences. As argued before, the run of Figure 8 has reason-
able advantages compared to the run of Figure 9. The above sequence does not distinguish be-
tween both runs. In particular, the sequence does not express important behavioral properties that
are distinguished by causal runs. Causal runs provide full information about these causal depend-
encies. Interesting aspects of system behavior such as the flow of control, the flow of goods, pos-
sible parallel behavior etc. are directly represented in process nets, but they are hidden in se-
quences of events. For example, the process net shown in Figure 8 very clearly shows the flow of
control (ready, insert, inserted, accept, ...) and the different local states and events of the bever-
ages (cold, brew, warm, dispense, ...).

Simulation of a system model means construction of a set of (different) runs. In general, each
causal run corresponds to a nonempty set of occurrence sequences. This correspondence is for-
mally established by Lemma 1. Taking the sequence of labels of events in occurrence sequences
of process nets yields all occurrence sequences of the system net. The number of event occur-
rence sequences of a single process net grows dramatically when a system exhibits more
concurrency. Each of these occurrence sequences represents the very same causal system run.
Hence, the simulation of more than one of these sequences yields no additional information on
the causal behavior of the system. The gain of efficiency is most evident when all runs of a sys-
tem can be simulated, i.e. when there is only a finite number of finite runs. In the case of arbi-
trary large runs, a set of process nets allows to represent a larger significant part of the behavior
than a comparable large set of occurrence sequences.

14

In the example shown in Figure 8, the left event brew can occur at any position before the second
dispense event. The other brew event can occur arbitrarily after the first dispense. So this process
net possesses 24 maximal occurrence sequences. Some of these sequences differ only with re-
spect to the order of the two brew events, but they still represent 21 different occurrence se-
quences of the system net.

The number of occurrence sequences of a single process net grows dramatically when a system
exhibits more concurrency. In general, the number of occurrence sequences of a single process
net grows exponentially with the number of concurrent transitions. Hence, the simulation of
more than one of these sequences yields no additional information on the behavior of the system.
However, if a system exhibits no concurrency at all, then nothing is gained by the construction of
process nets because in this case each process net has only one maximal occurrence sequence.

As mentioned previously, a single occurrence sequence might correspond to more than one proc-
ess net. This only happens in case of system nets that are not safe, i.e. have more than one token
on a place at a reachable marking. In this case the ratio between the number of process nets and
the number of occurrence sequences might be slightly reduced.

In previous publications, we have described the simulation algorithms [De00a, De02]. Crucial
aspects are a compact representation of similar runs, completeness with respect to all possible
alternatives and in particular termination conditions for potentially infinite runs.

As described in the third section, we have to provide means to analyze the constructed runs with
respect to specified requirements. These specifications are formulated on the level of the system
net in a graphical way (see [De00a]), adopting the well-known fact transitions [GT76] and intro-
ducing analogous graphical representations for other properties).

As the specifications are interpreted on runs, we developed algorithms for analysis of process
nets. It turned out that the particular structure of these nets lead to significant advantages with
respect to efficiency, compared to occurrence sequences, at least for some important classes of
requirement specifications. As examples, we now describe two such classes, namely goals and
facts.

A goal requires that a certain situation will eventually occur. More precisely, each process net
satisfying some fairness condition should contain a condition that is mapped to a certain place.
Clearly, checking whether a given process net contains such a condition is a trivial task. How-
ever, if the simulation of process nets can be stopped at arbitrary states then process nets provide
little information about goals; if a goal is not reached in a process net then this required property
either does not hold true, or it holds true and a state marking a corresponding condition is
reached in any continuation of the stopped process net. Our termination criterion of the simula-
tion algorithm guarantees that such a situation cannot occur [De02]. This termination criterion
takes the difference between transitions that belong to the control algorithm model and transi-
tions that belong to the environment model into account; the environment is allowed to stop per-
forming actions eventually whereas the control should always continues to proceed unless it runs
into a deadlock situation.

15

More generally, goals can require that a set of causally independent conditions hold eventually.
In our example, one could require that eventually all beverages are warm. Provided that the sys-
tem behaves in a fair manner, this requirement holds true. Notice that a sequential run might
have no according reachable marking if the transition brew always occurs immediately before
dispense. Hence, in general, goals addressing more than one condition can not be equivalently
defined using sequential semantics.

A fact is a property that holds for all reachable markings of a system model (sometimes facts are
called invariant or stable properties). Facts can be checked in runs by analyzing all reached
states. This is simple for sequential runs because the markings reached during an occurrence se-
quence are explicitly represented. Certain facts can be checked more efficiently using causal
runs, without enumerating all markings reached during the run. This claim will be demonstrated
using our example:

The process net of Figure 8 can be used to show that {ready, counter} is not a fact implemented
in the model. For this purpose, it is not necessary to play the token game. It rather suffices to find
conditions labeled by ready and counter, respectively, that are not ordered, i.e., not connected by
a directed path. In fact, the condition counter in the post-set of the first insert event and the sec-
ond condition ready are not ordered. Every set of unordered conditions is a subset of a maximal
set of unordered conditions. Every such maximal set corresponds to a reachable state of the proc-
ess net [BF88]. Every state of the process net corresponds to a reachable marking of the system
net by Lemma 1. Hence, the two unordered conditions prove that there is a reachable marking of
the system net that marks both places. So, if this fact belongs to the specification, we have to rule
out this process net.

6 Extensions, Experiences, Conclusions

We have presented an approach for the synthesis of formal models of dynamic systems. In par-
ticular, we considered controlled automation systems that consist of an uncontrolled plant and a
control software. The main purpose of the model is to specify the behavior of the controlled sys-
tem, which implies requirements for the controller software. The approach considers the genera-
tion of initial system models (the plant) and of formal specifications of the requirements for the
controlled system, which are implemented in the model step by step. The approach is based on
the assumption that the user knows the desired runs of the system but tends to make errors when
formalizing specifications for these runs. Thus, the core of the approach is a simulation based
technique to generate runs from specifications and to visualize these runs for inspection by the
user. We have argued that causal concurrent runs have important advantages in relation to se-
quential runs, which are considered usually, because they better capture relevant aspects of the
behavior, allow a more efficient representation of behavior and allow for more efficient analysis
methods with respect to system requirements.

This contribution only gave a rough survey on our approach. Missing details include theoretical
results, algorithmic details and extensions of the model. In this section we like to mention some
of the extensions because they turned out to be essential for industrial applications.

16

The first extension is that we employ high-level Petri nets rather than elementary place/transition
Petri nets. High-level Petri nets are often called Colored Petri Nets (see [Je95]), because the to-
kens appear with different identities (colors). Actually, tokens can represent arbitrarily structured
data which can be used to manage values given by sensors and control data. Moreover, if there
are several identical components of a system then it suffices to provide only one model for these
components. The high-level tokens then also capture information about the actual component the
token belongs to [DK01].

The second extension refers to specific modeling primitives for signals. Communication by sig-
nals is typical for controlled automation systems. In particular, the communication between con-
trol and plant is usually purely based on signals. There are two types of signal arcs in our variant
of Petri nets [JL02]. Event signals asymmetrically synchronize two transitions of a Petri net: The
synchronized transition occurs only if it is enabled and receives the signal from the other transi-
tion, sent by its occurrence. Condition signals allow to restrict the enabledness of a transition to
those states where certain places carry specific tokens. Both signal arcs can also be used to trans-
fer data from one transition to another one.

The third extension concerns modularity [JL02]. Each model is constituted by a set of modules.
For example, the control and the plant of a system are both modeled by a separate module. Mod-
ules only communicate via signals, that is, only signal arcs connect net elements of different
modules.

The concepts presented in this paper are partly implemented in the VIPtool that was developed
by our group, see http://www.informatik.ku-eichstaett.de/projekte/vip/. A first
version of the tool was written in the programming language Python. Recently, we began an im-
proved implementation based on Java. Main features of the tool are a graphical Petri net editor
for high-level Petri nets with signals, a simulation engine that generates causal runs, a visualiza-
tion module that presents runs in a nice and readable way and moreover depicts the relation be-
tween process net elements and system net elements, and analysis tools for process nets that al-
low to validate given system requirements. Moreover, the tool allows to calculate parameters
concerning time and cost such as average throughput time or average sum of costs for a given set
of runs. These features allow to integrate quantitative requirements to process model generation.

Finally, we like to report on experiences with applying the approach in an industrial case study.
This case study was developed together with engineers from the company Audi AG in Ingol-
stadt, Germany, and refers to the development of the forthcoming Audi A6 limousine. For legal
reasons, it is not possible to publish details of the models obtained within this project.

Cars are particular instances of the class of controlled automation systems. We do not consider
the driver controlling the car but software for the management and control of the various sensor
data and according necessary actions to be performed in modern vehicles.

The considered example deals with the control of the fuel gauge and the corresponding indicator
for possible remaining kilometers before refueling is necessary. Surprisingly, this topic has sig-
nificant complexity. One of the reasons is that the actual assumed amount of remaining gasoline
in the fuel tank is sometimes measured, with several sensors, and sometimes calculated from
previous assumptions about this amount and the measured subsequent consumption. Parameters

http://www.informatik.ku-eichstaett.de/projekte/vip/

17

that have direct influence to the calculation include the state of ignition, the state of car move-
ment and the duration of a stop (surprisingly, no sensor recognizes whether the gas cap was
opened). Moreover, different sensors indicate whether the car’s position is at an acclivity. Due to
the complicated shape of the tank, only some of the sensors actually contribute to the measure-
ment, dependent on the actual fill level. Finally, each single sensor can fail, in which case a plau-
sibility test rules out this sensor’s data from the fill level calculation. The calculation based on
consumed gasoline is quite precise, but small errors within a given tolerance range can finally
add up to severe differences between the actual fuel level and the assumed fuel level.

The previous paragraph should provide enough information to show that it needs a nontrivial
algorithm to control this technical system. The example contains continuous and discrete aspects.
We applied our approach to derive a Petri net model of the controlled system. The size of this
model has the magnitude of about 100 Petri net elements, it has several modules, and we heavily
used high-level tokens and signal arcs.

The general feedback from the users, engineers from Audi, indicates that they considered the
approach very useful. We were able to solve most of the problems posed by the users and, per-
haps more importantly, we proved that the documents provided by Audi contained much more
ambiguities and errors than expected by the users.

The main lesson we have learnt from this case study is the following. The assumption that users
start with a vague description of the plant and several requirements and look for the controlling
algorithm is only partly justified in this application area. Instead, very precise knowledge about
the plant is available. This information has to be transformed in our modeling language which
sometimes causes problems and needs feedback, because of hidden assumptions. The semi-
formal requirement specification hardly includes an enumeration of safety and liveness proper-
ties the controlled system has to satisfy. These requirements are implicitly given and often go
without saying (for example, the tank should not become empty without prior warning of the
driver). Instead, the model work was based on desired scenarios of the style “ what happens if...” .
In our terminology, a set of runs in a semi-formal style was provided, formalized in our ap-
proach, and validated by the experts. These runs have interfaces to the model of the plant. Each
model of the control algorithm that supports these runs will also support additional, different
runs and shows that situations can arise for which no scenarios were provided. Our simulation
approach identifies these situations and offers runs to the user that are possible due to the respec-
tive model, this way enforcing the users to complete the necessary requirements. Thereafter, the
formalized requirements are validated.

In this application area, real-time aspects play an important role. For example, the behavior of
the control algorithm depends on the duration of a car stop. Real-time aspects are not yet integral
part of our modeling language and our approach but can only be handled indirectly. Currently,
we are working on the integration of this aspect, without abandoning the concurrent causal se-
mantics though. In other words, we capture the notion of local time for single components but do
not assume the existence of a global time scale that would press all events of a run into a total
order, i.e., into a single sequence.

18

We are going to continue the cooperation with Audi and model more car components that are
relevant to control. We hope to better exploit concurrency and causality between events that be-
long to different components when larger models are considered, than it was possible by now.

References
[BF88] Best, E., C. Fernandez C.: Nonsequential Processes, Springer-Verlag, Berlin Heidelberg New

York (1988)

[De99] Desel, J.: Validation of System Models Using Partially Ordered Runs. In: Szczerbicka, H.
(ed.): Modelling and Simulation: A Tool for the Next Millenium, Proc. of the 13th European
Simulation Multiconference ESM‘99, Warschau, Juni 1999, 295–302, Society for Computer
Simulation (1999)

[De00a] Desel, J.: Validation of Process Models by Construction of Process Nets. In: van der Aalst, W.,
Desel, J., Oberweis, A. (eds.): Business Process Management, Lecture Notes in Computer Sci-
ence, Vol. 1806. Springer-Verlag, Berlin Heidelberg New York (2000) 110–128

[De00b] Desel, J.: Simulation of Petri Net Processes. In: Kozák, Š, Huba, M. (eds.): Proc. of the IFAC
Conference on Control System Design, Bratislava, June 2000, 14–25 (2000)

[De00c] Desel, J.: Teaching System Modeling, Simulation and Validation. In: Joines, J.A., Barton, R.R.,
Kang, K., Fishwick, P.A. (eds.): Proc. of the 2000 Winter Simulation Conference (WSC’00),
Orlando, December 2000, 1669–1675 (2000)

[DE00a] Desel, J., Erwin, T.: Modeling, Simulation and Analysis of Business Processes. In: van der
Aalst, W., Desel, J., Oberweis, A. (eds.): Business Process Management, Lecture Notes in
Computer Science, Vol. 1806. Springer-Verlag, Berlin Heidelberg New York (2000) 129–141

[DE00b] Desel, J., Erwin, T.: Hybrid Specifications: Looking at Workflows From a Run-Time Perspec-
tive. International Journal of Computer System Science and Engineering, Vol. 15 No. 5 (2000)
291–302

[De02] Desel, J.: Model Validation – A Theoretical Issue? In: Esparza, J., Lakos, C. (eds.): Application
and Theory of Petri Nets 2002, Lecture Notes in Computer Science, Vol. 2360. Springer-
Verlag, Berlin Heidelberg New York (2002) 23–43

[DK01] Desel, J., Kindler, E.: Petri Nets and Components – Extending the DAWN Approach. In:
Moldt, D. (ed.): Workshop on Modelling of Objects, Components and Agents. Aarhus, Den-
mark, DAIMI PB-553 (2001) 21–36

[DR98] Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Reisig, W., Rozenberg, G. (eds.): Lectures
on Petri Nets I: Basic Models, Lecture Notes in Computer Science, Vol. 1491. Springer-Verlag,
Berlin Heidelberg New York (1998) 122–173

[JL02] Juhás, G, Lorenz, R.: Modeling with Petri Modules. In: Caillurd, B., Darondeau, P., Lavagno,
L., Xie, X. (eds.): Synthesis and Control of Discrete Event Systems. Kluver Academic Press
(2002) 125–138

[GR83] Goltz, U., Reisig, W.: The Non-Sequential Behaviour of Petri Nets. Information and Computa-
tion, Vol. 57 (1983) 125–147

[GT76] Genrich, H., Thieler-Mevissen, G.: The Calculus of Facts. Mathematical Foundations of Com-
puter Science, Springer-Verlag, Berlin Heidelberg New York (1976) 588–595

[Je95] Jensen, K.: Coloured Petri Nets, Vol. 1: Basic Concepts. 2nd edition, Springer-Verlag, Berlin
Heidelberg New York (1995)

	CD Title Page
	CD Table of Contents
	Acronym List
	Acrobat Help
	Formalization and Validation An Iterative Process in Model Synthesis
	ABSTRACT.
	1 Introduction
	2 Model Validation
	3 The Approach
	4 Petri Nets
	5 Simulation by Construction of Runs
	6 Extensions, Experiences, Conclusions
	References

